Chapter 4 – The Wave Equation and its Solution in Gases and Liquids

Slides to accompany lectures in Vibro-Acoustic Design in Mechanical Systems
© 2012 by D. W. Herrin
Department of Mechanical Engineering
University of Kentucky
Lexington, KY 40506-0503
Tel: 859-218-0609
dherrin@engr.uky.edu

Chapter 4 – The Wave Equation and its Solution in Gases and Liquids

Simplifying Assumptions
- The medium is homogenous and isotropic
- The medium is linearly elastic
- Viscous losses are negligible
- Heat transfer in the medium can be ignored
- Gravitational effects can be ignored
- Acoustic disturbances are small

Sound Pressure and Particle Velocity

\[p(\vec{r},t) = p_0 + p(\vec{r},t) \]

Total Pressure Undisturbed Pressure Disturbed Pressure

Particle Velocity

\[\vec{u}(\vec{r},t) = u_x \hat{i} + u_y \hat{j} + u_z \hat{k} \]

Density and Temperature

\[\rho(\vec{r},t) = \rho_0 + \rho(\vec{r},t) \]

Total Density Undisturbed Density Disturbed Density

Absolute Temperature

\[T(\vec{r},t) \]

Equation of Continuity

\[\frac{\partial}{\partial t}(\rho \Delta x \Delta y \Delta z) = \rho u_x \frac{\partial u_x}{\partial x} \Delta x \Delta y \Delta z - \left(\rho + \frac{\partial \rho}{\partial x} \Delta x \right) \left(u_x + \frac{\partial u_x}{\partial x} \right) \Delta y \Delta z \]
Equation of Continuity

\[\frac{\partial}{\partial t} \left(\rho \Delta x \Delta y \Delta z \right) = \rho \frac{\partial u}{\partial x} \Delta x \Delta y \Delta z \]

\[\frac{\partial}{\partial t} \left(\rho u \Delta x \Delta y \Delta z \right) = \rho u \frac{\partial \Delta x}{\partial x} \Delta x \Delta y \Delta z \]

3D Equation of Continuity

\[\frac{\partial \rho}{\partial t} + \rho \mathbf{u} \cdot \nabla \mathbf{u} = 0 \]

Equation of Motion

\[F = (p + p)(\rho \Delta x \Delta y \Delta z) = \left(p + p + \frac{\partial (p + p)}{\partial x} \Delta x \right) \Delta y \Delta z \]

\[= \frac{\partial (p + p)}{\partial x} \Delta x \Delta y \Delta z \]

\[= -\frac{\partial p}{\partial x} \Delta x \Delta y \Delta z \]

Equation of Motion

\[a_i = \lim_{L \to 0} \frac{u_i (x + \Delta x, t + \Delta t) - u_i (x, t)}{\Delta t} \]

\[a_i = \lim_{L \to 0} \frac{u_i (x + \Delta x - x) + \frac{\partial u_i}{\partial t} (t + \Delta t - t) + \cdots}{\Delta t} \]

Assuming small disturbances the 1st term is small.

\[a_i = \frac{\partial u_i}{\partial x} + \frac{\partial u_i}{\partial t} \]
Equation of Motion

\[a = \frac{\partial u}{\partial t} \]
\[F_i = -\frac{\partial}{\partial x_i} \Delta u \Delta \gamma \Delta c \]
\[\Delta u = \frac{(\rho_0 + \rho) \Delta u \Delta \gamma \Delta c}{\partial t} \]
\[\rho \frac{\partial \Delta u}{\partial x} + \frac{\partial \rho}{\partial t} = 0 \]

3D Equation of Motion

\[\rho \frac{\partial \Delta u}{\partial t} + \nabla \rho = 0 \]

Thermodynamic Equation of State

For an adiabatic process:

\[\gamma \rho \frac{\partial u}{\partial t} - \rho \frac{\partial p}{\partial x} = 0 \]

For a fluid of fixed mass:

\[M = \rho V_0 \]
\[M = (\rho_0 + \rho)(V_0 + \delta V) \]
\[= \rho_0 V_0 + V_0 \rho + \rho \delta V \]
\[V_0 \rho + \rho \delta V = 0 \]
\[\rho = -\rho_0 \frac{\delta V}{V_0} \]

Equation of Motion

For an Ideal Gas

Equation of State:

\[\frac{p}{\rho} = RT \]

For an adiabatic process:

\[\frac{p_0 + p}{p_0} = \left(\frac{\rho_0 + \rho}{\rho_0} \right)^{\gamma} \]
\[\gamma = \frac{c_s}{c} \]
\[\frac{\partial p}{\partial \rho} \mid_{\gamma} = \rho \left(\frac{\rho_0 + \rho}{\rho_0} \right)^{\gamma - 1} = \frac{\rho_0}{p_0} = \gamma RT_0 \]

Thermodynamic Equation of State

The pressure-density relation for a fluid is usually non-linear:

\[p = \rho \rho_0 \rho_0 \]
\[p = \rho \rho_0 \rho_0 \]
\[p = \rho_0 \rho_0 \]
\[\rho = \rho_0 \rho_0 \]
\[\rho_0 \rho_0 \]
\[\rho \rho_0 \rho_0 \]

For small (acoustic) changes about the ambient state:

\[p = \rho \rho_0 \rho_0 \]
\[\rho = \rho_0 \rho_0 \]
\[\rho_0 \rho_0 \]
\[\rho \rho_0 \rho_0 \]
\[\rho_0 \rho_0 \]
\[\rho \rho_0 \rho_0 \]

The Speed of Sound

Units of \(\frac{p}{\rho} \) kg/m/s \(\frac{N}{m^2} \) \(\frac{kg}{m^3} \) m/s \(\frac{m}{s} \)

\[c = \sqrt{\frac{p}{\rho}} \]

For an ideal gas undergoing adiabatic compression and expansion:

\[c = \frac{\sqrt{\frac{p}{\rho}}}{\sqrt{\frac{p_0}{\rho_0}}} = \frac{\rho_0}{\rho} \frac{p}{p_0} \frac{RT_0}{RT} \]

Mass of a mole of gas

\[R = 8.315 \frac{J}{mol K} \]
The Speed of Sound

\[c = \sqrt{\frac{RT}{M}} \]

For:
\[\rho_0 = 1.013 \times 10^5 \text{ Pa} \] (one atmosphere)
\[\rho_0 = 1.21 \text{ kg/m}^3 \] (air at 20°C)
\[\gamma = 1.402 \text{ (air)} \]

\[c = \sqrt{\frac{1.402 \times 10^3 \text{ m}^3}{1.21 \text{ s}}} = 343.0 \text{ m/s} \]

Deriving the Wave Equation

The Continuity Equation

\[\frac{\partial \rho}{\partial t} + \rho_0 \frac{\partial u}{\partial x} = 0 \]

Differentiate with time

\[\frac{\partial^2 \rho}{\partial t^2} + \rho_0 \frac{\partial^2 u}{\partial x \partial t} = 0 \]

The Equation of Motion

\[\rho_0 \frac{\partial^2 u}{\partial x \partial t} + \frac{\partial p}{\partial x} = 0 \]

\[\rho_0 \frac{\partial^2 u}{\partial x^2} + \frac{\partial p}{\partial x} = 0 \]

Subtract first from second equation

\[\rho_0 \frac{\partial^2 u}{\partial x} - \frac{\partial^2 p}{\partial x^2} = 0 \]

Use equation of state to eliminate \(\rho \)

\[\beta = \rho_0 \frac{\partial p}{\partial \rho_0} \]

or

\[\rho = \beta \frac{\partial p}{\partial \rho_0} \]

Then

\[\frac{\partial^2 p}{\partial x^2} - \frac{\partial^2 p}{\partial t^2} = 0 \]
For the wave at \(\rho \)

\[\frac{\partial^2 p}{\partial t^2} - \frac{1}{c^2} \frac{\partial^2 p}{\partial x^2} = 0 \]

In 3D

\[\nabla^2 p = \frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} \]

The Wave Equation

In 1D

\[\frac{\partial^2 p}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} \]

In 3D

\[\nabla^2 p = \frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} \]

Solutions to the Wave Equation

In One Dimension

Piston oscillates with frequency \(f \)

\[p(x, t) = P \sin(\omega t - kx) \]

Higher pressure (compression)

\[p(x, t) = P \sin(\omega t + kx) \]

Lower pressure (rarefaction)

\[p(x, t) = P \sin(\omega t - kx) \]

Waves move with speed of sound \(c \)

Functional Description

For the wave at \(t = 0 \): \(p(x) = P \sin(\frac{2\pi}{\lambda} x) \)

Wavelength \(\lambda = \frac{c}{f} \)

For the wave at \(t = \lambda / c \): \(p(x, \lambda / c) = P \sin\left(\frac{2\pi}{\lambda} (x - \lambda)\right) \)

Wavenumber \(\kappa = \frac{\omega}{c} \)

For the wave at any \(t \): \(p(x, t) = P \sin\left(\frac{2\pi}{\lambda} (x - \lambda t)\right) \)

Acoustic Particle Velocity

Equation of Motion

\[\rho \ddot{u} = -\frac{dp(x, t)}{dx} \]

NO FLOW!! Fluid particles only oscillate! (series of springs and masses)

\[u(x, t) = \frac{1}{\rho} \int_{x'}^x dp(x', t) dx' = \frac{P_k}{\rho} \cos(kx - \omega t) \]

\[u(x, t) = \frac{P_k}{\rho} \sin(kx - \omega t) \]

\[u(x, t) = \frac{P_k}{\rho} \sin(kx - \omega t) \]

(i.e., a momentum wave in phase with the sound pressure wave)

Exponential Form

Recall that any harmonic function may be expressed as either the real or imaginary part of a similar but complex function, e.g.,

\[F \cos(\omega t) = \text{Re}[F e^{j\omega t}] \quad \text{or} \quad F \sin(\omega t) = \text{Im}[F e^{j\omega t}] \]

\[e^{j\theta} = \cos\theta + j \sin\theta \]

\[e^{j(\omega + \theta)} = \cos(\omega t + \theta) + j \sin(\omega t + \theta) \]

\[e^{j(\omega + \theta)} = e^{j\theta} e^{j\omega t} \]

(This is a plane harmonic wave traveling in the +\(\theta \) direction.)

\[e^{j(\omega + \theta)} = e^{j\omega t} e^{j\theta} \]

(This is a plane harmonic wave traveling in the +\(\theta \) direction.)

University of Kentucky
Dept. of Mech. Engineering
ME 510 Vibro-Acoustic Design

University of Kentucky
Dept. of Mech. Engineering
ME 510 Vibro-Acoustic Design

University of Kentucky
Dept. of Mech. Engineering
ME 510 Vibro-Acoustic Design

University of Kentucky
Dept. of Mech. Engineering
ME 510 Vibro-Acoustic Design

University of Kentucky
Dept. of Mech. Engineering
ME 510 Vibro-Acoustic Design

University of Kentucky
Dept. of Mech. Engineering
ME 510 Vibro-Acoustic Design

University of Kentucky
Dept. of Mech. Engineering
ME 510 Vibro-Acoustic Design

University of Kentucky
Dept. of Mech. Engineering
ME 510 Vibro-Acoustic Design
Harmonic Solution of 1D Wave Equation

For harmonic waves:

\[p(x,t) = \rho \left(\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} \right) \]

Substituting:

\[u(x,t) = e^{j \omega t} \]

\[\frac{d^2 p(x,t)}{dx^2} + k^2 p(x,t) = 0 \]

Solution:

\[p(x) = C e^{j k x} + D e^{-j k x} \]

Particles Velocity:

\[\ddot{u}(x,t) = \frac{\rho C}{\rho_0 c} e^{j (\omega x - ct)} - \frac{\rho C}{\rho_0 c} e^{-j (\omega x + ct)} \]

Example:

\[u_0 = \cos(\omega t) \]

\[u_L = 0 \]

\[\ddot{u}(x,t) = \frac{p_r}{\rho_0 c} e^{j (\omega x - ct)} - \frac{p_r}{\rho_0 c} e^{-j (\omega x + ct)} \]

\[1 = \frac{p_r}{\rho_0 c} - \frac{p_r}{\rho_0 c} e^{2 j \omega t} \]

\[p_r = \frac{\rho_0 c}{1 - e^{2 j \omega t}} \]

\[p_r = \frac{p_r}{\rho_0 c} e^{j \omega L} - \frac{p_r}{\rho_0 c} e^{-j \omega L} \]

Specific Impedance:

\[Z = \frac{p}{u} \]

For the free plane wave case (no reflected wave):

\[Z_0 = \rho_0 c \]
Sound Power Level:

Recall:

Example:

\[P'(x,t) = p_0 e^{j(\omega t + kx)} \]

\[\vec{u}(x,t) = \frac{p_0}{\rho c} e^{j(\omega t - kx)} \]

Reference Quantities and dB Scale

Recall:

\[L_p(dB) = 10 \log \left(\frac{P}{P_0} \right) \]

\(P_0 = 20 \mu Pa \)

Sound Power Level:

\[L_p(dB) = 10 \log \left(\frac{W}{W_0} \right) \]

\(W_0 = 1 \times 10^{-12} \text{ watts} \)

Example: What are the sound pressure and sound levels of the fan in the previous problem?

\[L_p = 20 \log \left(\frac{3.72}{20 \times 10^{-5}} \right) = 102.4 \text{ dB (re } 20 \mu Pa) \]

\[L_p = 10 \log \left(\frac{0.001}{10^{-10}} \right) = 90 \text{ dB (re } 10^{-12} \text{ W}) \]

Approximate Relationship between \(L_p \) and \(L_m \)

\[\frac{P_m}{W} = \frac{P_m}{P_0} \]

\[L_p = 10 \log \left(\frac{p_0^2}{W} \right) \]

\[p_0^2 / W = 10 \log \left(\frac{W}{W_0} \right) \]

\[p_m / p_0 = (20 \times 10^{-5} \text{ Pa}) \]

\[4.15 \times 10^{-14} \text{ watts} = W_{m} \]

\[L_p = 10 \log \left(\frac{W_{m}}{W_0} \right) = 10 \log \left(\frac{W}{W_0} \right) \]

\[L_m = L_p - 10 \log (S) \text{ (in } m^2) \]

Comparing to the previous (exact) calculation:

\[L_m = 90 - 10 \log (0.06) = 102.2 \text{ dB (re } 20 \mu Pa) \]
Harmonic Solution for Free Spherical Wave

Sound pressure a distance \(r \) from the point source:

\[
\rho(r,t) = \frac{A_i}{r} e^{i(kr-\omega t)}
\]

Free field (no reflections)

This is similar to a plane wave, but for spherical waves the sound pressure amplitude decreases with distance from the source of sound.

Impedance of a Free Spherical Wave

\[
Z = \frac{p}{u_i} = \frac{\rho_i c}{1 + \frac{i}{kr}}
\]

For \(kr \ll 1 \) (the nearfield)
\[
Z(r) = j\rho_i c k r
\]

For \(kr \gg 1 \) (the farfield)
\[
Z(r) = \rho_i c
\]

Sound Intensity and Sound Power

\[
I_r(r) = \frac{1}{2} \text{Re}(pu) = \frac{A_i^2}{2\rho_i c r^2}
\]
\[
W = T(r) 4\pi r^2 = 2\pi \frac{A_i^2}{\rho_i c}
\]

Imaginary sphere enclosing source