Chapter 10 – Sound in Ducts

Types of Mufflers
1. Dissipative (absorptive) silencer:
 - Sound is attenuated due to absorption (conversion to heat)
 - Duct or pipe
 - Sound absorbing material (e.g., duct liner)

2. Reactive muffler:
 - Sound is attenuated by reflection and "cancellation" of sound waves
 - Compressor discharge details
 - 40 mm

3. Combination reactive and dissipative muffler:
 - Sound is attenuated by reflection and "cancellation" of sound waves + absorption of sound
 - Sound absorbing material
 - Perforated tubes

Performance Measures Transmission Loss
Transmission loss (TL) of the muffler:

\[TL(\text{dB}) = 10 \log_{10} \frac{W_1}{W_2} \]

Performance Measures Insertion Loss
Insertion loss (IL) in dB:

\[IL(\text{dB}) = \text{SPL}_1 - \text{SPL}_2 \]

Insertion loss depends on:
- TL of muffler
- Lengths of pipes
- Termination (baffled vs. unbaffled)
- Source impedance

Note: TL is a property of the muffler; IL is a "system" performance measure.
Example TL and IL

Acoustic System Components

Summary 1

- Dissipative mufflers attenuate sound by converting sound energy to heat via viscosity and flow resistance – this process is called sound absorption.
- Common sound absorbing mechanisms used in dissipative mufflers are porous or fibrous materials or perforated tubes.
- Reactive mufflers attenuate sound by reflecting a portion of the incident sound waves back toward the source. This process is frequency selective and may result in unwanted resonances.
- Impedance concepts may be used to interpret reactive muffler behavior.

The Helmholtz Resonator

Named for:
Hermann von Helmholtz, 1821-1894, German physicist, physician, anatomist, and physiologist.

Major work: Book, On the Sensations of Tone as a Physiological Basis for the Theory of Music, 1862.

Helmholtz Resonator Example

A 12-oz (355 ml) bottle has a 2 cm diameter neck that is 8 cm long. What is the resonance frequency?

\[f_r = \frac{c}{2\pi} \sqrt{\frac{S_B}{L'}} \times \frac{\pi (0.02)^2}{4} \]

\[f_r = 182 \text{ Hz} \]
Helmholtz Resonator as a Side Branch

\[|z_B| = \frac{P}{S_B u_B} = \frac{1}{\omega M - \frac{1}{\omega^2 K}} \]

Anechoic termination

- \(V = 0.001 \text{ m}^3 \)
- \(L = 2.5 \text{ mm} \)
- \(S_B = 2 \times 10^{-5} \text{ m}^2 \)
- \(S = 8 \times 10^{-4} \text{ m}^2 \)
- \(f_n = 154 \text{ Hz} \)

Network Interpretation

\[z_B = \frac{P}{S_B u_B} = \frac{1}{\omega M - \frac{1}{\omega^2 K}} \]

Can we make \(z_B \) zero?

\[z_B \rightarrow 0 \quad \text{when} \quad \omega = \frac{1}{\sqrt{s K}} \]

(Produces a short circuit and \(P \) is theoretically zero.)

A Tuned Dynamic Absorber

\[M_2 / M_1 = 0.5 \]

\[K_2 M_2 = K_1 M_1 \]

Resonances in an Open Pipe

\(\lambda_1 = \frac{2 L}{\pi} \rightarrow f_1 = \frac{c}{\lambda_1} = \frac{340}{6.75} \approx 50.75 \text{ Hz} \)

\(\lambda_2 = \frac{2 L}{\pi} \rightarrow f_2 = \frac{340}{13.5} \approx 25.53 \text{ Hz} \)

etc.

Example – HR Used as a Side Branch

\[|z_B| = \frac{P}{S_B u_B} = \frac{1}{\omega M - \frac{1}{\omega^2 K}} \]

Anechoic termination

- \(V = 750 \text{ cm}^3 \)
- \(L = 2.5 \text{ cm} (L' = 6.75 \text{ cm}) \)
- \(D = 5 \text{ cm} (D' = 19.6 \text{ cm}) \)
- \(D' = 10 \text{ cm} (S = 78.5 \text{ cm}^2) \)
- \(f_n = 340 \text{ Hz} \)

E.g., engine intake systems
The Quarter-Wave Resonator

The Quarter-Wave Resonator has an effect similar to the Helmholtz Resonator:

\[\frac{S}{S_B} = \frac{1}{2} \left(\frac{\sin \frac{n\pi}{L}}{ \frac{n\pi}{L} } \right) \]

where \(n = 1, 3, 5, \ldots \)

\[c_B = \frac{\omega}{L} \cos \left(\frac{n\pi}{L} \right) \]

\[c_o = \frac{\omega}{L} \sin \left(\frac{n\pi}{L} \right) \]

\[f_n = \frac{nc}{4L} \]

\[TL = 10 \log \left(\tan \left(\frac{\omega c}{2L} \right) + \frac{4S}{S_B} \right) \]

\[z_B = -\frac{\rho c_S}{S_B} \cos \left(\frac{n\pi}{L} \right) \]

where \(\omega = \sqrt{\frac{k}{m}} \) and \(m = \frac{A_C}{A_T} \)

Summary 2

- The side-branch resonator is analogous to the tuned dynamic absorber.
- Resonators used as side branches attenuate sound in the main duct or pipe.
- The transmission loss is confined over a relatively narrow band of frequencies centered at the natural frequency of the resonator.

Quarter Wave Tube + Helmholtz Resonator

Extended Inlet Muffler

\[Z = \frac{T}{180} \]
Combining Component Transfer Matrices

\[
\begin{bmatrix}
\mathbf{p}_1 \\
\mathbf{u}_1
\end{bmatrix} =
\begin{bmatrix} A & B \\ C & D \end{bmatrix}
\begin{bmatrix}
\mathbf{p}_2 \\
\mathbf{u}_2
\end{bmatrix}
\]

Transfer matrix of \(p\) component

\[
\begin{bmatrix}
\mathbf{p}_1 \\
\mathbf{u}_1
\end{bmatrix} =
\begin{bmatrix} A & B \\ C & D \end{bmatrix}
\begin{bmatrix}
\mathbf{p}_2 \\
\mathbf{u}_2
\end{bmatrix}
\]

Transfer, transmission, or four-pole matrix

(\(A, B, C,\) and \(D\) depend on the component)
Expansion Chamber Muffler

Transfer Matrix of a Side Branch

Helmholtz Resonator Model

Performance Measures Transmission Loss

\[
\begin{bmatrix}
 A & B \\
 C & D
\end{bmatrix}
\]

Transmission loss (TL) of the muffler:

\[
TL (\text{dB}) = 10 \log_{10} \left(\frac{W_0}{W_f} \right)
\]

\[
TL = 10 \log_{10} \left(\frac{S_1}{S_2} \frac{S_3 - B}{S_3} \frac{\rho c}{S_2} \frac{S_4}{S_5} \frac{S_6 - D}{S_6} \right)
\]
Resonances can form in the exhaust and tail pipes as well as within the muffler.

Transfer Impedance

Source Impedance

Source/Load Concept
Insertion Loss Prediction

Source Impedance Series Impedance

Source Impedance Parallel Impedance

Derivation Insertion Loss

Derivation Insertion Loss
Summary 3

- The transfer matrix method is based on plane wave (1-D) acoustic behavior (at component junctions).
- The transfer matrix method can be used to determine the system behavior from component "transfer matrices."
- Applicability is limited to cascaded (series) components and simple branch components (not applicable to successive branching and parallel systems).