Chapter 3

- The Metal Layers
 - Bond Pad
 - Design and Layout
 - Parasitics
 - DRC
 - Cross Talk, Ground Bounce
Bond Pad

DESCRIPTION
- **INTERFACE: CHIP TO WORLD**
- **ESD PROTECTION**
 - NECESSARY
 - MORE DETAILS LATER
- **SIZE DEPENDS ON USAGE**
 - **BOND PAD**
 - SIZE SET BY WIRE PROCESS
 - **ETEST PAD**
 - SIZE SET BY PROBE CARD
 - **MICRO PAD**
 - SIZE SET BY MICRO-TIP
- **LOCATION**
 - **BOND PAD**
 - TOP METAL LAYER
 - **ETEST PAD**
 - ALL ROUTING LAYERS
 - **MICRO PAD**
 - ANY ROUTING LAYER
- **PASSIVATION**
 - MUST REMOVE TO PROBE
 - PAD.DG LAYER USED FOR MASK
Design and Layout

- **DESCRIPTION**
 - **CONNECTIVITY**
 - METAL1 → VIA1 → METAL2
 - **RULES**
 - VIA1 MUST BE ENCLOSED BY
 - METAL1
 - METAL2
 - VIA1 IS ONE FIXED W/L
 - **CONNECTIVITY**
 - METAL1 → VIA1 → METAL2
 - NWELL IS NOT CONNECTED
 - HOW TO CONNECT TO NWELL?
 - CAN / SHOULD HAVE MANY VIAS
 - HOW MANY VIAS IN A DESIGN?

Figure 3.4 Layout and cross-sectional views.

Figure 3.5 An example layout and cross-sectional view using including the n-well.

Figure 3.15 The schematics of the contact resistances for the layouts in Fig. 3.14.
Parasitics

DESCRIPTION
- SEPARATE DEVICE FROM OTHER
 - WHAT DEVICES ARE HERE?
 - WHAT “OTHER” IS HERE?

RESISTANCE
- METAL SHEET RHO
 - WHAT ARE UNITS OF SHEET RHO?
 - HOW IS SHEET RHO FOUND?

- VIA RESISTANCE
 - NO SHEET RHO, WHY?

CAPACITANCE
- METAL1 OVER SUBSTRATE
 - WHERE ARE TERMINALS?
 - DISTRIBUTED CAP → LUMPED

- METAL2 OVER METAL 1

DISTRIBUTIONS
- RESISTANCES, CAPS DO NOT HAVE ONE VALUE ONLY
ELECTROMIGRATION, DRC

- **DESCRIPTION**
 - **ELECTROMIGRATION**
 - LIMITS I_{max}
 - DUE TO BAMBOO FORMATION
 - SEPARATION, FAILURE
 - **DRC RULES**
 - BOOK VALUES ARE NOT TYPICAL
 - NEED DESIGN RULE PRIMER
 - **TERMINOLOGY**
 - ENCLOSURE
 - SPACING
 - WIDTH
 - OVERLAP

KEY PHRASE, THESE ARE NOT THE RULES THAT YOU USE

Figure 3.11 Design rules for the metal layers using the CMOSEDU rules.
Cross Talk, Ground Bounce

DESCRIPTION

- **CONDUCTORS INTERACT**
 - EM FIELD OVERLAP, V INDUCED

- **CROSS TALK**
 - AC SIGNALS
 - \(I_{\text{mutual}} = C_{\text{mutual}} \frac{dV_{\text{signal}}}{dt} \)

- **GROUND BOUNCE**
 - AC, DC SIGNALS

- **V=IR**
 - CAUSE AND EFFECT
 - V IS FROM POWER SUPPLY
 - I IS FROM V/R
 - R IS FIXED, BASED ON ROUTING

- **DECOUPLING CAP**
 - STORES VDD CHARGE
 - TRANSIENT CURRENT

Figure 3.16 Conductors used to illustrate crosstalk.

Figure 3.17 Illustrating problems with incorrectly sized conductors.

Figure 3.18 Estimating the decoupling capacitance needed in an output buffer.