Chapter 14

- Dynamic Logic Gates
 - Fundamentals
 - Simulations
 - Non-Overlapping Clock
 - CMOS TG in Dynamic Circuits
 - Clocked CMOS Logic
 - Clocked Latch
 - Pre-charge Evaluate (PE) Logic
 - Domino Logic
 - NP (Zipper) Logic
 - Dynamic Latch, Register
DYNAMIC CIRCUITS

FUNDAMENTALS

- CAPACITANCE STORES CHARGE
 - “DYNAMIC” LOGIC
 - SUSCEPTIBLE TO NOISE
- PG=H
 - IN=VDD, NODE B→VDD-Vtn
 - IN=GND, NODE B→GND
- PG=L
 - NODE B=VDD-Vtn → GND
 - NODE B=GND
- TIME THAT CHARGE REMAINS?

- OFF-STATE CURRENT
 - S/D TO BODY LEAKAGE
 - POLY TO FOX EDGE LEAKAGE
 - SOURCE TO DRAIN LEAKAGE
- LOG(Id)=-8.45
- Id = 10^{-8.45} = 3.55nA
- Ioff ~ 7.1nA / um → GOOD METRIC
- \(\frac{dV}{dt} = I_{off} \times \frac{W}{C_{node}} \)

Figure 14.1 Example of a dynamic circuit and associated storage capacitance.

Figure 14.2 Drain current of an NMOS device plotted from weak to strong inversion. See Fig. 6.16. PMOS netlist is found at cmoseedu.com.
DYNAMIC CIRCUITS

- 10/1
- Initially charge to 1 V
- 50 fF

FUNDAMENTALS

- **EXAMPLE 14.1**
 - \(\frac{dV}{dt} = \frac{3.55 \text{nA}}{50 \text{fF}} = 71 \text{mV/\mu s} \)
 - IF INITIAL CHARGE=1V,
 \(t = \frac{1 \text{V}}{(0.071 \text{V/\mu s})} = 14 \text{us} \)
 - SIMULATION RESULTS, \(t=30 \text{us} \)
 - WHY IS IT DIFFERENT?
 - WHAT IS SOURCE-BULK VOLTAGE?

- **EXAMPLE 14.2**
 - KEEP INPUT AT VDD/2, NOT GND
 - VDS NOW LOWER

Figure 14.4 Time it takes the capacitor to discharge due to the off current of the MOSFET in Fig. 14.3.

Figure 6.19 Current-voltage characteristics for 50 nm MOSFETs.
LOGIC – DYNAMIC CMOS

- Non-overlapping (NOL) clock
 - Needed for 2-phase clock systems
 - Similar to master-slave FF
 - Clocks out of phase
 - Matching in routing, xors

EXAMPLE CIRCUITS

- **Dynamic Shift Register**
 - NOL clock
 - A0 – A3 data lines
 - Shifts through with clock

Figure 14.9 Nonoverlapping clock generation circuit.

Figure 14.8 Dynamic shift register with associated nonoverlapping clock signals.
LOGIC – DYNAMIC CMOS

DESCRIPTION

DIFFERING DEFINITIONS
- CLOCKED IN SOME SECTIONS
- PARASITICS AS PART OF CIRCUIT

PROS
- ONE TRANSISTOR, VERY SMALL
- FAST

CONS
- DATA TRANSIENT
- SUBJECT TO NOISE
- PTV DELTAS
 - PROCESS, TEMP, VOLT

OPERATION
- CONTROL GATE PULSED HIGH
- INPUT A TRANSFERRED TO B
- CONTROL GATE GOES LOW
- NODE B CONTAINS VDD-Vtn
- REFRESH DATA OR OUTPUT CHG

SIMULATIONS
- GMIN IS A SHUNT RESISTOR ACROSS DIODES
- USE DEFAULTS, BUT KEEP IN MIND
- dV/dt~200uV/us

Figure 14.10 CMOS TG used in dynamic logic.
Baker Ch. 14 Dynamic Logic Gates

Introduction to VLSI

LOGIC – CLOCKED CMOS

DESCRIPTION
- CLOCK USED TO ACTIVATE GATE
- SIMILAR TO TRI-STATE INVERTER
- PROS
 - BETTER ISOLATION
 - NO RACE CONDITIONS
 - REDUCED XTOR COUNT VS. CMOS
- CONS
 - MORE COMPLICATED
 - NEED 2-PHASE CLOCK

CLOCKED INVERTER

Figure 14.11 A clocked CMOS latch. The clock signals can be generated with an RS latch so that the edges occur essentially at the same moment in time.
Baker Ch. 14 Dynamic Logic Gates

LOGIC – PE

PRE-CHARGE EVALUATE (PE)

- **OPERATION**
 - OUTPUT PRE-CHARGED BY PMOS
 - CLK ACTIVATES NMOS SECTION
 - CLK=L, N-OFF, P-ON, OUT-H
 - CLK=H, N-ON, P-OFF, OUT-LOGIC

- **PROS**
 - OUTPUT CAP LOWER
 - SINGLE GATE PER INPUT
 - LOWER POWER DISSIPATION
 - FASTER

- **CONS**
 - OUTPUT LOGIC ONLY VALID WHEN CLOCK IS HIGH VS. STATIC LOGIC
 - GLITCH IN TIME BETWEEN PRE-CHARGE AND EVALUATE CASCADES DOWN CHAIN
 - DOMINO LOGIC SOLVES PROBLEM
LOGIC – DOMINO, NP

DESCRIPTION

OPERATION
- GATE CANNOT CHG STATE UNTIL PREVIOUS STAGE CHG STATE
- HOLD THE OUTPUT LOW SO NEXT STAGE NMOS IS OFF

PROS
- GLITCH FREE OPERATION
- CAN SIZE INVERTER TO DRIVE LARGE CAPACITIVE LOADS

CONS
- IF NMOS PRODUCES LOGIC 1 AT NODE A DURING EVALUATION, THEN NODE A IS SUBJECT TO LEAKAGE AND STATE CHANGE

KEEPER CIRCUIT
- IMPLEMENT KEEPER TO MAINTAIN STATE OF OUTPUT
- W/L SMALL TO NOT CHG OUTPUT
- CAN USE TWO LONG CHANNEL NMOS ALONG WITH PMOS TO REDUCE CAPACITANCE

NP, AKA ZIPPER
- SIMILAR, BUT REMOVE INVERTER
DYNAMIC CIRCUITS

![Dynamic Circuit Diagram]

DYNAMIC* LATCH
- "PSEUDO-STATIC"
 - IMPROVES NOISE IMMUNITY
 - INCREASE IN DELAY
 - CLK=L, D→DBAR
 - CLK=H, CAP KEEPS DATA

DYNAMIC* REGISTER
- BACK TO BACK LATCHES
- FLIP CLOCK FOR SLAVE STAGE
- CAN USE PASS GATES (NMOS ONLY) FOR SMALLER XTOR COUNT
- PROS
 - 4 VS. 10 GATES
 - SIMPLER
 - FASTER
 - LOWER POWER
- CONS
 - REFRESH NEEDED
 - DIODE LKG, SUBTHRESHOLD LKG
 - SUBJECT TO NOISE
 - DOES NOT TRACK DELTA VDD
 - CLOCK OVERLAP, D→QBAR

"Adapted from Digital Integrated Circuits, A Design Perspective, Rabae, Chandrakasan, and Nikolic, Copyright 2003 Prentice Hall/Pearson."

USES PARASITIC CAP IN CKT