Chapter 20

- Current Mirrors
 - Basics
 - Long Channel
 - Matching
 - Biasing
 - Short Channel
 - Temperature
 - Subthreshold
 - Cascoding
 - Simple
 - Low Voltage, Wide Swing
 - Wide Swing, Short Channel
 - Regulated Drain
 - Biasing Circuits
 - Long Channel Biasing
 - Short Channel Biasing
Current Mirrors - Basics

![Current Mirror Diagram](image)

LONG CHANNEL DERIVATION

- **IDEAL OUTPUT RESISTANCE=∞**
 - OUTPUT CURRENT INDEPENDENT OF VOLTAGE ACROSS SOURCE
- **ASSUME M1, M2 SAME W, L**
- **D1 SHORTED TO G1**
- **V_{GS1}=V_{DS1}=V_{GS2}**
- **DUE TO SAME Vgs, SAME Ids**
- **IF RES EQUAL, M2 VD=M1 VD**
- **THEREFORE: V_{GS1}=V_{DS1}=V_{GS2}=V_{DS2}**

- **CURRENT IN M1:**
 - \(I_{REF} = I_{D1} = (K_P N / 2) (W_1/L_1) (V_{GS1} - V_{tn})^2 \)
 - **KNOWN:**
 - \(V_{GS1} = V_{GS2} \)
 - \(V_{DS1, SAT} = V_{GS1} - V_{tn} \) (WHERE \(V_{DG}=V_{tn} \))

- **CURRENT IN M2:**
 - \(I_O = I_{D2} = (K_P N / 2) (W_2/L_2) (V_{GS1} - V_{tn})^2 \)

- **RATIO OF THE CURRENTS:**
 - \(I_O / I_{REF} = (W_2/L_2) / (W_1/L_1) \)

- **IF L_1=L_2, THEN:**
 - \(I_O / I_{REF} = W_2 / W_1 \)
Current Mirrors - Basics

Current Mirrors - Basics

- \(I_O / I_{REF} = W_2 / W_1 \)
 - SCALE \(W \) TO GET VARIOUS \(I_O \)
- WHAT IS THE RESISTOR VALUE?
 - FOR \(I_{REF} = 20 \mu A \),
 \(I_{REF} = (VDD - V_{GS1}) / R \rightarrow R = (5 - 1.05) / 20 \mu A \)
 \(R = 200k \) OHMS
- HOW IS \(V_{GS1} = 1.05 \) FOUND?
 - SWEEP \(V_O \) TO FIND WHERE \(I_{REF} = I_O \)
 - SOLVE THE EQUATION:
 - \(I_{REF} = I_{D1} = (KP_N / 2) (W_1 / L_1) (V_{GS1} - V_t)^2 \)
 - KNOW \(I_{REF}, KP, W, L, V_t \)
- WHY DOES \(I_O \) DROP BELOW 250 mV?
- CURRENT SOURCE RANGE:
 - \(V_{DS, SAT} < V_O < VDD \)
- IMPORTANT IDEAS:
 - \(I_O = I_{REF} \) WHEN \(V_O = V_{DS1} = V_{GS1} \)
 - \(I_{REF}, V_{GS1} \) NOT DEPENDENT ON \(V_O \)
Current Mirrors - Basics

- **PROCESS CAUSE**
 - **FIRST-ORDER PROCESS ISSUES:**
 - GATE OXIDE THICKNESS
 - LATERAL DIFFUSION
 - OXIDE ENCROACHMENT
 - OXIDE CHARGE DENSITY

- **THRESHOLD MISMATCH**
 - MISMATCH IN ΔV_t LEADS TO:
 - $I_0/I_{\text{REF}} \approx 1 - \left[\frac{2 \Delta V_t}{V_{GS}-V_t} \right] = 1 - \left[\frac{2 \Delta V_t}{V_{DS,SAT}} \right]$
 - WANT LARGE V_{GS}
 - REDUCES MISMATCH

- **TRANSCONDUCTANCE MISMATCH**
 - MISMATCH IN ΔK_P LEADS TO:
 - $I_0/I_{\text{REF}} \approx 1 + \left[\frac{\Delta K_P}{K_P} \frac{N}{N} \right]$
 - WANT LARGE AREA, K_P INCR

- **V_{DS} MISMATCH**
 - $I_0/I_{\text{REF}} \approx \frac{[1 + \lambda_2 V_0]}{[1 + \lambda_1 V_{DS1}]}$
 - V_{DS} VARIES W/ RESISTANCE
 - DO NOT USE SHORT CHANNEL

Figure 20.5 (a) Large device with a single contact and (b) its equivalent circuit. (c) Adding more contacts to reduce parasitic resistance.

Figure 20.6 (a) A parallel device with dummy strips, (b) the equivalent circuit, and (c) undercutting.

Note: Cap reduced by $(n+1)/2n$
CURRENT MIRRORS - BASICS

- **LAYOUT CONSIDERATIONS**
 - DO NOT CHANGE ORIENTATION
 - IMPLANTS ARE ORIENTED
 - INTERDIGITIZE FINGERS
 - AVERAGES PROCESS VARIATIONS

- **DIFFERING WIDTHS ISSUES**
 - LATERAL DIFFUSION \(L_{\text{DIFF}} \)
 - OXIDE ENCROACHMENT \(W_{\text{ENC}} \)
 - \(\frac{I_o}{I_{\text{REF}}} = \frac{(W_{2,\text{DRAWN}}-2W_{\text{ENC}})(L_{1,\text{DRAWN}}-2L_{\text{DIFF}})}{(W_{1,\text{DRAWN}}-2W_{\text{ENC}})(L_{2,\text{DRAWN}}-2L_{\text{DIFF}})} \)
 - FIX \(L_1 = L_2 \), MINIMIZE MISMATCH
 - WIDTHS DETERMINE OFFSET

Figure 20.9 Layout of a current mirror (a) without width correction and (b) with width correction.
Current Mirrors - Basics

BIASING

- DO NOT WANT TO USE RES
 - VARIES WITH TEMPERATURE
- WANT \(I_{\text{REF}} \) VDD-INDEPENDENT
- REPLACE RES WITH XTOR
 - USE EITHER M1 OR M3
 - WANT VDS IND OF VDD, GND
- EXAMPLE CHANGE VS. VDD:
 - \(I_O \sim 8\text{nA} / \text{mV} \)
 - \(I_{\text{REF}} \) (XTOR) \(\sim 12\text{nA} / \text{mV} \)
 - \(I_{\text{REF}} \) (RES) \(\sim 5\text{nA} / \text{mV} \)

Figure 20.10 How reference and output current vary with VDD.

Figure 20.12 A MOSFET-only bias circuit.

Figure 20.13 Behavior of MOSFET-only bias circuits with changes in VDD.
Current Mirrors - Basics

- **SUPPLY INDEPENDENT BIAS**
 - WANT I_{REF} VDD-INDEPENDENT
 - LAST EXAMPLES 5-12nA/mV
 - MOVE RESISTOR FROM $D \rightarrow S$
 - DRAWBACK: $V_{GS2} \neq V_{GS5}$
 - CAN USE M1 AS DIODE
 - MIRROR M1 CURRENT TO M5
 - NEED M2=M1 CURRENT
 - ADD PMOS CURRENT MIRROR
 - DERIVE I_{REF} AS A FUNCTION OF VDD
 - $V_{GS1} = V_{GS2} + (I_{\text{REF}})(R)$
 - MAKES SENSE IF $V_{GS1} > V_{GS2}$
 - DONE BY MAKING $W_2 > W_1$
 - RESULT:
 - $I_{\text{REF}} = \frac{2}{R_2K_{PN}W_1L_1} \left[1 - \frac{1}{(K^{1/2})^2} \right]^2$
 - I_{REF} INDEPENDENT OF VDD
 - CONSTANT-GM BIAS CIRCUIT
 - $K=4$, EVALUATE EQUATION
 - $g_m = \left[2K_{PN}(W/L) I_{\text{REF}} \right]^{1/2} = 1/R$

Figure 20.1 A basic current mirror.

Figure 20.4 Developing the Beta-multiplier reference.
Current Mirrors - Basics

- **BIASING- USING STARTUP**
 - UNWANTED STATE
 - M1, M2 GATES AT GND
 - M3, M4 GATES AT VDD
 - NO CURRENT FLOWS
 - NEED STARTUP
 - IN THE ZERO-CURRENT STATE
 - MSU1 VG=0
 - MSU2 VG>=VDD-Vtp
 - MSU3 TURNS ON
 - VDD @ M3/4 → M1/2
 - M1/2 RISE, CIRCUIT WORKS
 - MSU3 GATE GOES TO GND
 - POSITIVE FEEDBACK ISSUES
 - STABLE IF GAIN < 1
 - RESISTOR SMALL, GAIN>1
 - M2 PARASITIC CAP, R→0
 - CIRCUIT WILL OSCILLATE
 - RESULTS
 - \(V_{DD_{MIN}} = V_{DS3,SAT} + V_{GS1} \approx 1.3V \)
 - \(\Delta I_{REF} / \Delta VDD \approx 800\text{pA} / \text{mV} \)
 - COMPARE TO 5-12nA / mV

Figure 20.15 Beta-multiplier reference for biasing in the long-channel process described in Table 9.1.

Figure 20.16 The reference currents through M1 and M2 in the Beta-multiplier.