Class 15: Input / Output Circuits

Topics:
1. Introduction
2. Input Protection
3. Input and Output Circuits
4. Input and Output Circuits
5. Input and Output Circuits
6. Input and Output Circuits
7. Input and Output Circuits
8. Input and Output Circuits
Why does one need protection on inputs pads?
HBM ESD

If an oxide has a resistance of 1×10^9 ohms, what current exists at 1kV?
$I = \frac{1e3}{1e9} = 1e-6 \text{ C/s}$
$Q = \frac{1e-6 \text{ C/s}}{1.602e-19 \text{ C/e-}} \approx 6e12 \text{ e-/s}$
-does not take very much charge to be placed on a gate to charge to 1kV

When charge is present, the desire is to shunt it to ground or power
Simple input protection circuit

![Diagram of input protection circuit]

Figure 6.10 A commonly used CMOS input protection circuit.

What is this preventing?
Why are the diodes in the direction they are?

- Voltage clamped to ~GND or ~VDD
- Resistance is referred to as an ESD resistor. What is its function?
- Do you want R to be large or small? How is it formed?
Alternative protection circuit using field transistor

E-fields: \(\frac{1.8V}{30A} = \frac{1.8V}{30 \times 10^{-10} m} = 0.06 \times 10^9 \text{ V/m} = 6 \times 10^8 \text{ V/m} \)

Field threshold on the order of 20V
Driving capacitive loads:
• Capacitive loads at the chip I/O much larger than internal cap
• 1-30pF load translates into 500um to 1000um xtor widths
• To get this equivalent width, a chain of inverters is used

• Ideal situation, subsequent size increases by e (2.72)

![Diagram of an output driver](image)

Figure 6.12 A typical output driver.

• What are the p and n widths shown above?
Tri-State Outputs: 0, 1, Z

Simple example:

Enable Output
“0” Z
“1” Data

Why is this configuration not desirable?
Output driven through what?
Class 15: Input / Output Circuits
Input and Output Circuits (Martin p.274-7)

Another approach:

<table>
<thead>
<tr>
<th>Enable</th>
<th>Data</th>
<th>in-a</th>
<th>in-b</th>
<th>Q1(p)</th>
<th>Q2(n)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>off</td>
<td>off</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>off</td>
<td>on</td>
<td>GND</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>on</td>
<td>off</td>
<td>VDD</td>
</tr>
</tbody>
</table>

Inverters add more drive current
More efficient approach:

<table>
<thead>
<tr>
<th>Enable</th>
<th>Q5(n)</th>
<th>Q6(p)</th>
<th>Q4(p)</th>
<th>Q8(n)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>N1-N2 shorted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(thus Q3 connected to Q7 and Q4 connected to Q8, which looks like an inverter)</td>
</tr>
<tr>
<td>0</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>N1->VDD, N2->GND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q1, Q2 off: High-Z</td>
</tr>
</tbody>
</table>

Figure 6.15 An efficient realization of the circuit of Fig. 6.14.