Passenger Rail Service

• Intercity Passenger Rail
 • trains that move passengers between cities
 • long distances, high speeds

• Urban Rail Transit
 • trains that move passengers within a city/urban area
 OR between the suburbs and the central city
 • several types of urban rail transit modes
INTERCITY PASSENGER RAIL
Intercity Passenger Rail Service in U.S.

- operated by Amtrak (National Railroad Passenger Corporation)
 - intercity passenger rail services in 46 states and D.C.
 - provides contract service for several commuter rail agencies
- created by U.S. Congress - Rail Passenger Service Act, 1970
- Amtrak Board of Control sets policy and oversees management – appointed by President
 - Secretary of Transportation in an ex officio member
- Federal Railroad Administration (FRA) administers grants to Amtrak
- www.amtrak.com
Amtrak Rail Network
• Over 27 million annual passengers on Amtrak
• On an average day - 75,000 passengers ride on up to 300 Amtrak trains
• Last year, Amtrak trains in the Northeast corridor (Washington-Boston) carried almost 10 million passengers
• New York City is the busiest station
• 21,000 miles of routes, 19,000 employees
• 70% of miles traveled by Amtrak trains are on tracks owned by other railroads - “host railroads”
 • BNSF is the largest host railroad for Amtrak
• Amtrak pays host railroads for use of their track and resources to operate the trains
Intercity Passenger Rail Service in Canada

• operated by VIA Rail (similar to Amtrak)
High Speed Rail (HSR)

- a rail line and service designed for high speed operation - *cruising speed* of 125+ mph
- Japanese introduced the first high speed trains in the mid 1960s – Shinkansen (Bullet Train)
- today high speed rail lines are common in France, Germany, United Kingdom, China, and many other countries
Japanese Skinkansen (Bullet Train)
French TGV
(Train a Grande Vitesse)
Intercity Express (ICE) - Germany
British Rail High Speed Trains
(HST-125 – diesel powered)
High Speed Rail in the United States

- Amtrak Acela Express – Northeast Corridor, top speed – 135 mph
- several high speed rail corridors studied
- US DOT Federal Railroad Administration
 www.fra.dot.gov
Acela Express
High Speed Rail Design Features

• Ideal:
 • integral trainsets
 • light axle loads
 • exclusive rights-of-way
 • grade separated
 • high design speed – low grades, long horizontal curves
 • sophisticated train control
 • train suspension - tilting trains
 • intensive maintenance
Maglev (Magnetic Levitation)

- cruising speeds of 300+ mph
- development and research in several countries – Germany, Japan, and others
- system in Shangei, China (Transrapid from Germany)
Tourist/Excursion Railroads

• becoming very popular in the U.S. - several operating railroads and museums

• Tourist Railway Association
 www.traininc.org

• Association of Railway Museums
 www.railwaymuseums.org
URBAN RAIL TRANSIT

• rail service in urban applications
• operates in a city OR between the suburbs and the central city
• several types of urban rail transit modes
 • Commuter Rail
 • Heavy Rail Rapid Transit (Metro)
 • Streetcars and Light Rail Transit
Commuter Rail

• a passenger railroad service that operates in metropolitan areas on tracks that are usually part of a railroad network for intercity passenger or freight trains

• service is primarily for commuters traveling between the suburbs and downtown

• also called *Regional Rail* or *Suburban Rail*
Commuter Rail
• Commuter rail service has passenger cars/coaches that are pulled or pushed by one or more locomotives or has self-propelled cars
• Several systems use double-decked cars
• Diesel locomotives or electric powered
• One or two stations in the central business district; automobile parking provided at outlying stations
Commuter Rail Systems in North America

• **U.S.** - Boston, Chicago, Los Angeles, Miami, Minneapolis, New York, Philadelphia, San Francisco, and many others

• **Canada** – Montreal, Toronto (GO Transit), Vancouver

• **Largest systems (ridership)** – New York (Long Island, Metro-North, and NJ Transit), Chicago (Metra)
Chicago Metra
Heavy Rail Rapid Transit

• high speed, high capacity trains
• multi-car trains operate on short headways (some can operate at 2 minutes or less)
• electric power taken from a third rail
• exclusive right-of-way – underground, elevated, at-grade
• sophisticated signaling
• variety of other names – *Metro, Subway, Underground*
Heavy Rail Rapid Transit
Heavy Rail Rapid Transit Systems in North America

- **U.S.** – Atlanta, Baltimore, Boston, Chicago, Cleveland, Los Angeles, Miami, New York, Philadelphia, San Francisco (BART), Washington

- **Largest systems (ridership)** – New York, Chicago, Washington

- **Canada** – Montreal, Toronto

- **Mexico** – Mexico City
Washington Metro
The Tokyo Subway (Loading)
Streetcars

• electrically powered vehicles that share the road with other traffic - power is from an overhead wire (trolley or pantograph)
• first demonstrated at expositions in Chicago and Toronto – late 1800s
• several developers/inventors (including Thomas Edison)
• also called *Tram, Trolley, Street Railway*
Streetcars were common in cities throughout North America and the world
Streetcars were used to link small communities – called “Interurbans”
Streetcars (Toronto)
Light Rail Transit (LRT)

- a new name for the streetcar
- electrically powered vehicles, but may link two or more vehicles to form a train
- a variety of operating strategies:
 - share the road
 - transit only street – *Transitway, Transit Mall*
 - on a separate right-of-way – on the surface, underground, or an elevated structure
- typically have honor fare collection
REES Module #5 - Transit, Commuter and Intercity Passenger Rail
LRT Systems in North America

• **U.S.** – Boston, Buffalo, Dallas, Denver, Los Angeles, Minneapolis, Portland, Pittsburgh, Sacramento, St. Louis, Salt Lake City, San Diego, San Francisco, and many others

• **Largest systems (ridership)** – San Francisco, Boston, San Diego, Portland, Los Angeles

• **Canada** – Calgary, Edmonton, Ottawa, Toronto
Minneapolis Hiawatha Line
Houston LRT
Heritage/Vintage Trolleys

• Light rail systems that use vehicles built before 1960 or modern replicas – downtown circulator or tourist service
U.S. Transit Passengers

• over **10 billion transit trips** in the U.S. last year (53% on buses, 34% on heavy rail rapid transit, 5% on commuter rail, 4% on LRT)

• average trip length:
 - Bus – 3.9 miles
 - LRT – 4.6 miles
 - Heavy Rail rapid transit – 4.8 miles
 - Commuter rail – 23.4 miles

• **Largest transit agencies (ridership)** – New York, Chicago, LA, Washington
Other Rail Transit Modes

• a variety of other special or unique passenger transportation modes that use many of the principles of railroad engineering
 • Cable Systems
 • Monorails
 • Automated Guideway (Guided) Transit
 • others
Cable Systems
(funiculars, aerial/gondalas, and others)
San Francisco Cable Cars
Incline Railroad (Pittsburgh)
Cog Railroad
Monorails

- Several types
 - Bottom supported or suspended
 - High performance
 - Lower performance (Minirail) – used in zoos and expositions

- www.monorails.org
Las Vegas Monorail
Automated Guideway (Guided) Transit - AGT

- unmanned, automated vehicles operating on fixed, exclusive guideways
- several manufacturers/suppliers
- major activity centers, like airports, have become an important application for AGT
- APM – Automated People Mover
- DPM – Downtown People Mover
- PRT – Personal Rapid Transit
Automated People Mover (APM)
Downtown People Mover (DPM)

- AGT system operating in the downtown area
- several research initiatives in the 1980s
- three systems built
 - Jacksonville
 - Miami
 - Detroit
Detroit DPM
Personal Rapid Transit (PRT)
Automated Rapid Transit
(Vancouver Skytrain)
Reference Books

Reference Materials

• Web Sites:
 • US DOT Federal Railroad Administration
 www.fra.dot.gov
 • US DOT Federal Transit Administration
 www.fta.dot.gov
 • American Public Transportation Association
 www.apta.com
 Public Transportation Fact Book
The End
Copyright Restrictions and Disclaimer

Presentation Author

Bill Sproule
Professor
Department of Civil and Environmental Engineering
Michigan Tech University
1985 301B Dillman Hall
Houghton, Michigan 49931
(906) 487-2568
<wsproule@mtu.edu>

It is the author’s intention that the information contained in this file be used for non-commercial, educational purposes with as few restrictions as possible. However, there are some necessary constraints on its use as described below.

Copyright Restrictions and Disclaimer:

The materials used in this file have come from a variety of sources and have been assembled here for personal use by the author for educational purposes. The copyright for some of the images and graphics used in this presentation may be held by others. Users may not change or delete any author attribution, copyright notice, trademark or other legend. Users of this material may not further reproduce this material without permission from the copyright owner. It is the responsibility of the user to obtain such permissions as necessary. You may not, without prior consent from the copyright owner, modify, copy, publish, display, transmit, adapt or in any way exploit the content of this file. Additional restrictions may apply to specific images or graphics as indicated herein.

The contents of this file are provided on an "as is" basis and without warranties of any kind, either express or implied. The author makes no warranties or representations, including any warranties of title, noninfringement of copyright or other rights, nor does the author make any warranties or representation regarding the correctness, accuracy or reliability of the content or other material in the file.