Rehabilitation Techniques to Improve Long-Term Performances of Highway-Railway At-Grade Crossings

By

Jerry G. Rose, PE
Professor of Civil Engineering
University of Kentucky

2012 Southeastern Rail Highway Safety Conference

Charlotte, North Carolina
November 7-9, 2012
Representative Governmental Agencies and Railroad Companies
Wide Variety of Crossing Surfaces (Premium to Low Cost)
Emphasis is on the Desirability of Adequate Support
Purpose of Crossing

• Provide a **Smooth** Surface
 For the Safe Passage of Rubber-Tired Highway Vehicles Across the Railroad Track
Material Costs Per Track Foot

- $100/tk-ft + $300/ tk-ft (Premium Surface)
- $100/tk-ft (Track Only)
- $100/ tk-ft (Low Cost Surface)
Ideal Objectives
(Crossing Management Program)

• Crossing will Stay Smooth and Stable (not Settle) for Long Period of Time – Long Life

• Thus Minimize Costly Frequent Interruptions to Rail and Highway Traffic

• And Improve Operating Performance for the Rail and Highway Traffic
Ideal Practices

• Rapidly Install/Renew (If Required)

• One Day (Railroad 4 hours/Highway 8-12 hours)

• Use Layered Support

• Properly Engineered

• Structurally Designed

• Use Premium Materials
Ideal Procedure

• Complete Rebuild
• Designed Support Layer
• Pre-Compacted Ballast
• New Track Panel
• New Crossing Surface
Ideal Arrangement

• Cooperative Effort to Optimize Expertise

• Local Highway Agency and RR Company

• Thus Reduce Costs, Improve Quality, and Minimize Traffic Disruption
• Typical Crossings Can Deteriorate

• Low Ride Quality R-O-U-G-H and L-O-W
• Typical Granular Crossings

• Excessive Deflections > \(\frac{1}{4} \) inch (6 mm) Common

• Structurally Dissimilar Relative to Highway

KY 7 Beaver Gap
Permanent Settlement

- Impact Loadings
- Low Spot
- Impaired Drainage
- Deterioration
- Rehabilitated Frequently
Ideal

• Adequate Strength and Support

• Minimize Deflections

• Reduce Permanent Deformations (Settlement)

• Waterproof

• Long-Life, Smooth Crossing

• 20 Year Design Life
Consensus Goals -- Ideal Crossing Renewal Management Program

• Quality, Safe, Cost Effective, Stable, Smooth, Serviceable

• Minimum of Disruption 4 hr. Train and 8-12 hr. Highway Closures

• Cooperative, Cost-Sharing, Minimum Expense
Planning Meeting

Railroad Company and Governmental/Highway Agency Must Agree on Three Aspects:

• **Select Date**
 Rail Volume/Schedule
 Highway Volume/Critical/Detours

Maryville, TN
• **Assign Responsibilities**

– Highway Closure and Traffic Control
– Public Announcements/Notifications
– Railroad Curfew
– Temporary Crossing/Detour
– Track/Surface Remove and Replace
– Highway Paving
• **Share Cost**

Removal and Installation of Track and Crossing (Materials, Labor and Equipment)

Traffic Control, Public Announcements, Highway Paving
Classic All-Granular Trackbed without Separation Layer and Adequate Drainage
Figure 2a. Asphalt Underlayement trackbed without granular subballast layer

Figure 2b. Asphalt Combination trackbed containing both asphalt and subballast layers

Figure 2c. Ballastless trackbed containing thickened asphalt and subballast layers
Strengthens Trackbed Support
Waterproofs Underlying Roadbed
Confines Ballast and Track

Dense-Graded Highway Base Mix
1 – 1 ½ in. Maximum Size Aggregate
Asphalt Binder +0.5% above Optimum (optional)
Low to Medium Modulus Mix, 1 - 3% Air Voids (optional)
Example Costs and Economics
(Assume Crossing will be Paneled)

Asphalt = $60/ton delivered

\~\frac{1}{2} \text{ ton/tk-ft (layer: 6 in. thick, 12 ft. wide)}

$30/\text{tk-ft} \times 80 \text{ ft long} =
\quad \$2,400 \text{ for Underlayment}$

A Typical Crossing Renewal
\approx \$10,000 \text{ to } \$40,000\text{+}
Railway Companies and Public Agencies

Metrolink Caltrains KYDOT NS Corp.

West Virginia DOT TTI Railroad Iowa DOT

P&W Railroad/TriMet

Louis & Ind RR Indiana DOT

Hillsborough County, FL

Michigan DOT CSXT
- Bridge Decks and Approaches
- Turnouts and Crossovers
- Highway Crossings
- Yards
All Highway-Rail Grade crossings 6-inch thickness of HMAC Underlayment
CRUSHED MISCELLANEOUS BASE

10' TIMBER TIES
SEE NOTE 1

SCARIFY SUBGRADE ROADBED 6" DEEP AND COMPACTED WITH STEEL VIBRATORY ROLLER TO 90% ASTM D-155.

BAILLAST (TYP)

ASPHALT PAVEMENT

FIELD PANEL (TYP)

GAGE PANEL (TYP)

6" PERFORATED DRAIN PIPE (TYP)

SIGNAL CONDUITS (TYP)

COMPACTED HOT MIX ASPHALT CONCRETE (HMAC) SECTION, 6" MINIMUM COMPACTED WITH STEEL VIBRATORY ROLLER TO 95% CROWN AT CENTER OF TRACK, 2% SLOPE AWAY FROM CENTERLINE. PLACE AC IN SINGLE 6" THICK LIFT. SEE NOTE 3 (TYP)

TRACK SECTION FOR HORIZONTAL TANGENT

CRUSHED MISCELLANEOUS BASE

6" PERFORATED DRAIN PIPE (TYP)

SCARIFY SUBGRADE ROADBED 6" DEEP AND COMPACTED WITH STEEL VIBRATORY ROLLER TO 90% ASTM D-155.

ASPHALT PAVEMENT

FIELD PANEL (TYP)

GAGE PANEL (TYP)

INDUCTION LOOP (TYP)

SIGNAL CONDUITS (TYP)

COMPACTED HOT MIX ASPHALT CONCRETE (HMAC) SECTION, 6" MINIMUM COMPACTED WITH STEEL VIBRATORY ROLLER TO 95% CROWN AT CENTER OF TRACK, 2% SLOPE AWAY FROM CENTERLINE. PLACE AC IN SINGLE 6" THICK LIFT. SEE NOTE 3 (TYP)

TRACK SECTION FOR HORIZONTAL TANGENT AT CROSSING WITH EXIT GATES AND INDUCTION LOOPS
• Began AUC in 2000
• Do 7 to 8 AUC per year
• Typically Concrete Surfaces
• AU is 6 inches thick
WVDOT pays for:

- Crossing Materials
- Asphalt Underlayment
- Traffic Control
- Drainage Pipe
- Tie Differential

No Failures due to lack of support

Standard Practice if state money is used
WV 601 Jefferson Rd
South Charleston

Tacketts Branch Rd.
Hurricane
55 Miles Long
Caltrain (92), UP (3)
Used Asphalt Underlayment Since 1999
- Crossovers #20=10
- Turnouts=12
- Street Crossings=37
- Pedestrian Crossings=12
- Stations, since 1999=10
- Tunnels, approaches=4 (All)
- Tunnels, Inverts=2
- Bridges, approaches=15
Using Asphalt Underlayment Since 1987

• For Initial 10 years:
 – Tunnel=1
 – Open Track=7
 – Highway Crossing=26
 – Switches=7
 – Bridge Approaches=5
 – Shop=2
140-mile line
Began using asphalt underlayment in 1996
Since then 30 crossings underlain
(20 with state funds)
Major Crossings

All in Perfect Condition
(One changed out)

Have 180 Public and 60 Private Crossings
Portland & Western Railroad
WES -- 16 of 18 Public Crossings plus an Underpass

P&L – Do 12 to 15 Crossings per year, Oregon DOT pays for Materials, RR pays for Labor/Equipment – standard procedure, also Yard Lead Track

Perfect performance, no mud, no surfacing required.
SW 5th Street in Beavertown

SW Scholls Ferry Road
SW Teton Avenue in Tualatin
May 2010

SW Teton Avenue in Tualatin
May 2009
Salem Avenue SE in Albany

Geary Street in Albany
CROSSING NOTES:

1. The top of rail profile through the crossing shall follow design profile shown on plan and profile drawings.

2. The contractor shall protect all foundations and existing underground utilities from damage by excavation activities.

3. Contractor to notify the engineer for inspection of crossing subgrade. Contractor shall not cover up the subgrade until after inspection by engineer.

4. If all or part of the subgrade yields under proofroll or is determined to be unstable, contractor shall overexcavate, place, and compact suitable imported granular backfill material as directed by the engineer. Ballast removed during site excavation may be suitable as determined by the engineer.

5. Following tamping, consolidate the ballast shoulders and crib with a vibrator shoulder compactor meeting one of the models listed: Jackson Jordan 3100 compactor; Tamper CSC crib and shoulder consolidation; Tamper CSC II crib and shoulder consolidation; Plasser ballast compactor PBL 800. Fill cribs with additional ballast after compaction.

TYPICAL CROSSING SECTION

1/4" = 1'-0"
SW Durham Rd.
May 15-16, 2010
Asphalt Underlayment Program Since 2002
Renewed 11 Crossings
Anderson Road
2002-2009

Shelton Road
2006-2009
Grade Crossing Surface Repair Issues “Best Practices”
Ten Demonstration Projects with Asphalt Underlayment 2002.

State St.
Ann Arbor
Three Rivers
Clifton Drive
June 2004
NS

Lansing
W. Willow Street
September 2004
NS
S. State Street
Ann Arbor
July 2005

W. Liberty Street
Ann Arbor
July 2005
Iowa Department of Transportation
Primary Highway Crossing Program

Mary Jo Key, Grade Crossing Project Manager

Travis Tinken, Construction Inspector

September 25, 2012
State Surface Repair

- Road Use Tax Fund
- Application based
- First come, first serve
- 60% fund, 20% local, & 20% RR
- 10 year back log in 1998
- Crossing life was 2 years
Crossing Committee

Objectives:
• Increase life/rideability
• Develop maintenance/renewal practices

Reviewed:
• Current standards
• Current methods
• Best practices
• Potential funding sources

Requirements identified to provide expected Benefits
Program Implementation

- Sept. 1999 DOT Commission Approval
- Meetings with all railroads
- Hired staff and procured equipment
- Developed simple agreement and payment process
- Prioritization of crossings process established
- Input secured from DOT field offices and railroads
- Construction program began in 2000
Primary Program Funding

- Primary Road Fund provides $400 per linear foot for materials only

- DOT provides
 - Manpower
 - DOT equipment
 - Specialized equipment rental
 - Detour costs
 - Asphalt for underlayment and approaches
 - Drainage materials

- Railroad provides
 - Manpower
 - Railroad equipment
 - Flagger
 - Removal of track panels and removal from project site
Completed

Flood

Concrete failure

6 out of 7

Completed
Iowa DOT and Driver Benefits

- Safer, smoother, longer lasting crossings
- Limited crossing complaints
- IowaDOT manpower, equipment, funding and resources can be used elsewhere
- Streamed line processes allow fewer IowaDOT staff members to manage
- Fewer highway closures and driver disruptions
RR Benefit After Rebuild

- RR production track work done by gangs do not have to go thru the crossings -- skip
- The signal department has significantly fewer false activation issues
- Less maintenance time spent on surface failures and repairs
- Fewer slow orders
Iowa Crossing Surface Repair Today

City and county crossings - $900,000
(Off the top of the Road Users Tax Fund)

Primary road crossings - $500,000
(Primary Road Fund)

High Exposure city/county crossings - $500,000
(Federal 130 Safety Fund) review needs annually, ~ $4 million
Mason City, Iowa 9,000 ADT, 6% Trucks
Placed in 2005
Albia, Iowa placed 2006, US 34
Russell, Iowa, BNSF Double Main, Placed in 2000
Rt 69 Story City, Iowa, placed in 1997, 4000 ADT, 4% trucks, 50 mph traffic
Selected Kentucky Crossing Installations
Rosemont Garden and Waller Avenue, Lexington, KY, 2002, NS
60 MGT, 60 MPH, 60 Trains/Day & ~ 15,000 ADT
Rosemont:
7/23/02 #1 8:30am-6:30pm
7/24/02 #2 8:30am-6:00pm

Waller:
8/16/02 #1 8:50am-7:00pm
8/17/02 #2 8:30am-7:00pm

2 backhoes, 1 track loader, 1 roller (city), surfacing equipment
Rosemont

9 years later after “surfacing through”, removed and replaced concrete panels
Waller Avenue

9 years later after “surfacing through”, removed and replaced concrete panels

2011
George’s Branch

Eastern Kentucky

September 2001

CSX

(All Asphalt Surface – Very Economical)
10 years later -- 2011
3 Years later -- 2011
Ballastless

Installed 2008
Ballastless

Installed 2011
TESTS AND PERFORMANCE MEASURES

• Crossing Trackbed Pressure

• Crossing Surface Pressure

• Long-Term Crossing and Track Approaches Settlements
Pressure Cell

- Geokon Model 3500-2
- 9 in. Diameter
- Strain Gage
- Snap-Master
- Thermistor

Cell Placement on Asphalt
Cell Location at Richmond
Loaded Coal Train at Richmond

P-Cell 819 Beneath Rail in Crib

P-Cell 820 Beneath Rail and Tie

P-Cell 821 C/L Track in Crib

P-Cell 822 C/L Track and Tie
Loaded Concrete Truck at Richmond

![Image of concrete truck at Richmond]

![Graph showing pressure over time for P-Cell 820 beneath rail and tie]
Flat Wheel on an Empty Coal Train at Lackey

P-Cell 511 Beneath Rail and Tie

2 6-Axle Locomotives
95 Empty Cars
View of Tekscan Sensors

- Matrix-based array of force sensitive cells
- Silver conductive electrodes
- Pressure sensitive ink – Conductivity varies
- Crossing of ink – strain gauge

Tekscan Measurement Configuration

Diagram showing the components:
- Computer
- Magma
- Power Supply
- Tekscan Sensor
- Handle
Rear Tires of Tractor of a 151,000 lb Loaded Coal Truck on Concrete Crossing of Kentucky Coal Terminal, Mile Post 6.6. May 25, 2004

9842 lb

135 psi

72.93 in^2
Long-Term Trackbed Settlement

Longitudinal view of highway/rail crossing containing asphalt underlayment
KY Coal Terminal -- Heavy Train and Extra Heavy Highway Traffic with ASPHALT
Stanley (US 60)—Medium Train and Heavy Highway Traffic with ASPHALT
Average Top of Rail Elevations for US 60 Stanley

Installed 5/16/2002
References

• AREMA (2002) Annual Conference

• AREMA (2008) Annual Conference

• TRB (2009) Annual Meeting

• KTC (2009) Reports
 – 136-04-1F
 – 136-04-2F
 – 136-04-3F
Ongoing Activities Relative to Asphalt Underlayment Enhanced Structural Support for Rail/Highway Crossings

- Further Documenting the Economics of Asphalt Underlayment based on Performance of Crossings in Several States
- Developing a Consensus of Best Practices for Standards Development
- Evaluating the Merits of Cold-Mix Asphalt (Alternate Asphalt Mixes) in lieu of Hot-Mix Asphalt for Crossing Underlayment Applications
- Evaluating the Merits of “Ballastless” Crossing Designs for Applications on Light Traffic/Slow Speed Rail Line Crossings
- Evaluating the Economical Merits of Low-Cost Crossing Surfaces Incorporating Low-Cost Enhanced Support
- Evaluating Lightweight, Reusable Crossing Designs for Low Volume Roads
Closure

• Represent Current Practices

• Not All-Encompassing

• Typical Activities

Dr. Jerry G. Rose, P.E.
Professor of Civil Engineering
261 Raymond Building
University of Kentucky
Lexington, KY 40506
859-257-4278
Jerry.rose.uky.edu
www.engr.uky.edu/~jrose
Thank You for Your Attention
Any Questions ???